17MAT21

Second Semester B.E. Degree Examination, June/July 2019 Engineering Mathematics – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. Solve $(D^2 + 1)y = 3x^2 + 6x + 12$.

(06 Marks)

b. Solve $(D^3 + 2D^2 + D)y = e^{-x}$.

(07 Marks)

c. By the method of undetermined coefficients, solve $(D^2 + D - 2)y = x + \sin x$.

(07 Marks)

OR

2 a. Solve $(D^2 - 6D + 9)y = 6e^{3x} + 7e^{-2x}$.

(06 Marks)

b Solve $(D^3 - D)y = (2x + 1) + 4\cos x$.

(07 Marks)

c. By the method of variation of parameters, solve $(D^2 + 1)y = \csc x$.

(07 Marks)

Module-2

3 a. Solve $x^2y'' - 3xy' + 4y = 1 + x^2$.

(06 Marks)

b. Solve $xyp^2 - (x^2 + y^2)p + xy = 0$.

(07 Marks)

c. Solve $(px - y)(py + x) = a^2p$ by taking $x^2 = x$ and $y^2 = y$.

(07 Marks)

OR

4 a. Solve $(2+x)^2 y'' + (2+x)y' + y = \sin(2\log(2+x))$.

(06 Marks)

b. Solve $yp^2 + (x - y)p - x = 0$.

(07 Marks)

c. Obtain the general and singular solution of the equation $\sin px \cos y = \cos px \sin y + p$.

(07 Marks)

Module-3

5 a. Form a partial differential equation by eliminating arbitrary function

 $lx + my + nz = \phi(x^2 + y^2 + z^2)$

(06 Marks)

b. Solve $\frac{\partial^2 z}{\partial x^2} = xy$ subject to the conditions $\frac{\partial z}{\partial x} = \log(1+y)$ when x = 1 and z = 0 when x = 0.

(07 Marks)

c. Derive an expression for the one dimensional wave equation.

(07 Marks)

OR

6 a. Form a partial differential equation z = f(y+2x) + g(y-3x).

(06 Marks)

b. Solve
$$\frac{\partial^2 z}{\partial y^2} = z$$
, given that when $y = 0$, $z = e^x$ and $\frac{\partial z}{\partial y} = e^{-x}$. (07 Marks)

c. Find all possible solutions of heat equation $u_t = c^2 u_{xx}$ by the method of separation of variables. (07 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Module-4

- 7 a. Evaluate $\iint r \sin \theta \, dr \, d\theta$ over the cardioids $r = a(1 \cos \theta)$ above the initial line. (06 Marks)
 - b. Evaluate $\iint_{0}^{1} \iint_{y^2}^{1-x} x \, dz \, dx \, dy.$ (07 Marks)
 - c. Derive the relation between Beta and Gamma function as $B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. (07 Marks)

OR

- 8 a. Evaluate by changing the order of integration $\int_{0}^{\infty} \int_{x}^{e^{-y}} dy dx$. (06 Marks)
 - b. Find by double integration, the area lying between the parabola $y = 4x x^2$ and the line y = x. (07 Marks)
 - c. Show that $\int_{0}^{\pi/2} \sqrt{\cot \theta} \ d\theta = \frac{1}{2} \left[\frac{1}{4} \right] \left[\frac{3}{4} \right]$ (07 Marks)

Module-5

- 9 a. Find the Laplace transform of $\left(t\cos 2t + \frac{1 e^{3t}}{t}\right)$. (06 Marks)
 - b. Find the Laplace transform of $f(t) = E \sin \omega t$, $0 < t < \frac{\pi}{\omega}$ having the period $\frac{\pi}{\omega}$. (07 Marks)
 - c. Solve $y'' 3y' + 2y = 2e^{3t}$, y(0) = y'(0) = 0 by using Laplace transforms. (07 Marks)

OR

- 10 a. Find the inverse Laplace transforms of $\frac{s+1}{s^2+2s+2} + \log\left(\frac{s+a}{s+b}\right)$. (06 Marks)
 - b. By using convolution theorem, find $L^{-1}\left[\frac{s}{(s^2+1)(s-1)}\right]$. (07 Marks)
 - c. Express $f(t) = \begin{cases} \sin t, & 0 < t \le \frac{\pi}{2} \\ \cos t, & \frac{\pi}{2} < t \le \pi \end{cases}$ in terms of unit step functions and hence find its Laplace 1, $\pi < t$

transform. (07 Marks)

* * * * *